

FPGA – System Designer

5-days session

Title	FPGA - System Designer
Overview	This training will allow current students, engineers and firmware designers to have
	the required skills and know-how for designing and coding HDL modules for complex
	FPGA architectures. We will cover also FPGA design examples for Deep Learning and
	Artificial Intelligence (AI).
	The course/training will mainly focus on the following items:
	 FPGA architecture and resources: Xilinx vs Intel/Altera
	Xilinx Vivado design methodology
	Xilinx Zynq Processor
	 Xilinx HLS, SDSoC and SDAccel design methodologies
	Xilinx Unified Software Tools (Vitis)
	■ FPGA – SoC communication
	 High speed communication protocols
	 Synthesis and Implementation
	 Metastability and MTBF issues
	Design constraints
	■ Tcl scripting
	■ FloorPlanning
	 Partial Reconfiguration
	 Timing Closure
	■ Fan-out
	■ Pipelining
	 Designing and packaging IPs for FPGA
	 FPGA inference design methodology for AI
Labs	 Reset and clocking best practices
	■ Clock generation and constraining
	 Clock Domain Crossing best practices
	 Designing and constraining a DDR transfer
	 MicroBlaze SoC Processor Design into FPGA
	 Communicating between MicroBlaze and HDL modules
	Embedding a TCP/IP software stack into FPGA
	Implementing a high-speed 10G optical link into FPGA
	Implementing a PCIe design to communicate the FPGA board and the PC
	 Hardware acceleration using SDSoC and SDAccel
	 Running Embedded Linux on the FPGA board
	 Running an AI engine into the FPGA board
Audience	Firmware/FPGA or software engineers that intend to have a system level mastering
	of FPGAs to ease for them to take the lead for any future FPGA based project
Prerequisite	 VHDL or Verilog experience
	 Basic knowledge of FPGA architecture
Seats	[min = 8, max = 16]
Duration	5 days – 40 hours (50% courses, 50% Labs)