

FPGA – DSP Designer

5-days session

Title	FPGA - DSP Designer
Overview	This training will allow current students, engineers and DSP designers to have the required skills and know-how for designing and implementing, on FPGA, complex DSP algorithms that are mainly used in 4G/5G systems. The know-how and methodology acquired during the training will help easing the design of other DSP blocks. The course/training will mainly focus on the following items:
	 Fixed- and Floating-point representations for DSP Using High-Level Synthesis tools for designing DSP blocks Using MATLAB for designing complex DSP blocks Designing Digital Filters techniques
	 Diving into Xilinx and Altera DSP blocks Multi-rate Signal Processing techniques FFT design for FPGA CORDIC implementation
	 Interfacing FPGA with high-speed ADC Interfacing FPGA with high-speed DAC Beamforming techniques Complex Modulation schemes implementation
	 Forward Error Correction (FEC) techniques Digital Predistortion techniques Crest Factor Reduction techniques
Labs	 Designing & Implementing a FIR filter Designing & Implementing a CIC filter Designing & Implementing a Half-Band Filter Designing & Implementing a poly-phase filter Implementing a Radix-2 FFT Designing & Implementing a Digital Up Converter (DUC) Designing & Implementing a Digital Down Converter (DDC) Carrier timing and phase recovery implementation LTE signal demodulation Implementing a channel estimator Implementing a FEC module
Audience	Firmware/FPGA and DSP engineers that intend to implement DSP blocks inside FPGAs
Prerequisite	 VHDL or Verilog experience Basic knowledge of FPGA architecture Basic knowledge of digital signal processing theory
Seats	[min = 8, max = 16]
Duration	5 days – 40 hours (50% courses, 50% Labs)